Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294241

RESUMO

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Interleucina-33/genética , Citocinas , Imunomodulação , Imunidade
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255817

RESUMO

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Assuntos
Antibacterianos , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura , Axônios , Transporte Biológico
3.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014296

RESUMO

The murine helminth parasite Heligmosomoides polygyrus expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-ß, have been named TGM (TGF-ß Μimic). Multiple domains bind to different receptors, including TGF-ß receptors TßRI (ALK5) and TßRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-ß-responsive cell types. In contrast, a related protein, TGM4, targets a much more restricted cell repertoire, primarily acting on myeloid cells, with less potent effects on T cells and lacking activity on other TGF-ß-responsive cell types. TGM4 binds avidly to myeloid cells by flow cytometry, and can outcompete TGM1 for cell binding. Analysis of receptor binding in comparison to TGM1 reveals a 10-fold higher affinity than TGM1 for TGFßR-I (TßRI), but a 100-fold lower affinity for TßRII through Domain 3. Consequently, TGM4 is more dependent on co-receptor binding; in addition to CD44, TGM4 also engages CD49d (Itga4) through Domains 1-3, as well as CD206 and Neuropilin-1 through Domains 4 and 5. TGM4 was found to effectively modulate macrophage populations, inhibiting lipopolysaccharide-driven inflammatory cytokine production and boosting interleukin (IL)-4-stimulated responses such as Arginase-1 in vitro and in vivo. These results reveal that the modular nature of TGMs has allowed the fine tuning of the binding affinities of the TßR- and co-receptor binding domains to establish cell specificity for TGF-ß signalling in a manner that cannot be attained by the mammalian cytokine.

4.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887321

RESUMO

Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.


Assuntos
Helmintos , Parasitos , Doenças Parasitárias , Animais , Mucosa Intestinal/metabolismo , Doenças Parasitárias/metabolismo , Imunidade
5.
Am J Pathol ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832870

RESUMO

Coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-ß1 is a potent anti-inflammatory cytokine released in response to tissue injury. The aim of this study was to investigate the protective effects of TGF-ß1 after MI. In patients with STEMI, there was a significant correlation (P = 0.003) between higher circulating TGF-ß1 levels at 24 hours after MI and a reduction in infarct size after 3 months, suggesting a protective role of early increase in circulating TGF-ß1. A mouse model of cardiac ischemia reperfusion was used to demonstrate multiple benefits of exogenous TGF-ß1 delivered in the acute phase. It led to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of inflammatory cytokines IL-1ß and chemokine (C-C motif) ligand 2 (>50% reduction, P = 0.038 and 0.0004, respectively) at 24 hours, and reduced scar size at 4 weeks (21% reduction, P = 0.015) after reperfusion. Furthermore, a low-fibrogenic mimic of TGF-ß1, secreted by the helminth parasite Heligmosomoides polygyrus, had an almost identical protective effect on injured mouse hearts. Finally, genetic studies indicated that this benefit was mediated by TGF-ß signaling in the vascular endothelium.

6.
STAR Protoc ; 4(4): 102608, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751353

RESUMO

Parasitic helminth worms frequently infect the gastrointestinal tract and interact with the intestinal epithelium and specialized cell types within it. Intestinal organoids derived from stem cells that line the intestine represent a transformational technology in the study of epithelial-parasite dialogue. Here, we present a protocol for establishing small intestine organoid cultures and administering parasite products of interest to these cultures. We then describe steps for evaluating their impact by microscopy, flow cytometry, immunohistology, and mRNA gene expression. For complete details on the use and execution of this protocol, please refer to Drurey et al. (2022).1.

7.
Nat Commun ; 14(1): 5627, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699869

RESUMO

Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.


Assuntos
Helmintíase , Humanos , Homeostase , Histiócitos , Macrófagos , Citometria de Fluxo
8.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37638887

RESUMO

In this new review, Rick Maizels and Bill Gause summarize how type 2 immune responses combat helminth parasites through novel mechanisms, coordinating multiple innate and adaptive cell and molecular players that can eliminate infection and repair-resultant tissue damage.


Assuntos
Helmintíase , Helmintos , Animais , Helmintíase/imunologia
9.
Proc Natl Acad Sci U S A ; 120(34): e2302370120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590410

RESUMO

Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-ß mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-ß receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-ß signaling in mammalian cells.


Assuntos
Parasitos , Animais , Camundongos , Linfócitos T Reguladores , Transdução de Sinais , Fator de Crescimento Transformador beta , Fatores de Transcrição Forkhead , Mamíferos
10.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37625791

RESUMO

The Transforming Growth Factor-ß mimic (TGM) multigene family was recently discovered in the murine intestinal parasite Heligmosomoides polygyrus. This family was shaped by an atypical set of organismal and molecular evolutionary mechanisms along its path through the adaptive landscape. The relevant mechanisms are mimicry, convergence, exon modularity, new gene origination, and gene family neofunctionalization. We begin this review with a description of the TGM family and then address two evolutionary questions: "Why were TGM proteins needed for parasite survival" and "when did the TGM family originate"? For the former, we provide a likely answer, and for the latter, we identify multiple TGM building blocks in the ruminant intestinal parasite Haemonchus contortus. We close by identifying avenues for future investigation: new biochemical data to assign functions to more family members as well as new sequenced genomes in the Trichostrongyloidea superfamily and the Heligmosomoides genus to clarify TGM origins and expansion. Continued study of TGM proteins will generate increased knowledge of Transforming Growth Factor-ß signaling, host-parasite interactions, and metazoan evolutionary mechanisms.


Assuntos
Haemonchus , Parasitos , Animais , Camundongos , Interações Hospedeiro-Parasita/genética , Haemonchus/genética , Imunidade , Fatores de Crescimento Transformadores
11.
Trends Parasitol ; 39(7): 547-562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225557

RESUMO

Regulatory T cells (Tregs) are essential to control immune system responses to innocuous self-specificities, intestinal and environmental antigens. However, they may also interfere with immunity to parasites, particularly in chronic infection. Susceptibility to many parasite infections is, to a greater or lesser extent, controlled by Tregs, but often they play a more prominent role in moderating the immunopathological consequences of parasitism, and dampening bystander reactions in an antigen-nonspecific manner. More recently, Treg subtypes have been defined which may preferentially act in different contexts; we also discuss the degree to which this specialisation is now being mapped onto how Tregs maintain the delicate balance between tolerance, immunity, and pathology in infection.


Assuntos
Doenças Parasitárias , Linfócitos T Reguladores , Humanos , Intestinos
12.
Int J Parasitol ; 53(8): 393-403, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36931423

RESUMO

How parasites develop and survive, and how they stimulate or modulate host immune responses are important in understanding disease pathology and for the design of new control strategies. Microarray analysis and bulk RNA sequencing have provided a wealth of data on gene expression as parasites develop through different life-cycle stages and on host cell responses to infection. These techniques have enabled gene expression in the whole organism or host tissue to be detailed, but do not take account of the heterogeneity between cells of different types or developmental stages, nor the spatial organisation of these cells. Single-cell RNA-seq (scRNA-seq) adds a new dimension to studying parasite biology and host immunity by enabling gene profiling at the individual cell level. Here we review the application of scRNA-seq to establish gene expression cell atlases for multicellular helminths and to explore the expansion and molecular profile of individual host cell types involved in parasite immunity and tissue repair. Studying host-parasite interactions in vivo is challenging and we conclude this review by briefly discussing the applications of organoids (stem-cell derived mini-tissues) to examine host-parasite interactions at the local level, and as a potential system to study parasite development in vitro. Organoid technology and its applications have developed rapidly, and the elegant studies performed to date support the use of organoids as an alternative in vitro system for research on helminth parasites.


Assuntos
Helmintos , Interações Hospedeiro-Parasita , Animais , Interações Hospedeiro-Parasita/genética , Helmintos/fisiologia , Sequência de Bases , Estágios do Ciclo de Vida
13.
Discov Immunol ; 2(1): kyad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855464

RESUMO

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-ß. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

14.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604533

RESUMO

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Assuntos
Vesículas Extracelulares , Helmintos , Animais , Humanos , Vesículas Extracelulares/fisiologia , Reprodutibilidade dos Testes , Mamíferos
15.
Allergy ; 78(3): 714-730, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181709

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS: The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS: Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION: We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Interleucina-33/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Linfócitos/metabolismo , Dinoprostona/metabolismo , Pulmão/metabolismo
16.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187573

RESUMO

The murine helminth parasite Heligmosomoides polygyrus expresses a family of proteins structurally related to TGF-ß Mimic 1 (TGM1), a secreted five domain protein that activates the TGF-ß pathway and converts naïve T lymphocytes to immunosuppressive Tregs. TGM1 signals through the TGF-ß type I and type II receptors, TßRI and TßRII, with domains 1-2 and 3 binding TßRI and TßRII, respectively, and domains 4-5 binding CD44, a co-receptor abundant on T cells. TGM6 is a homologue of TGM1 that is co-expressed with TGM1, but lacks domains 1 and 2. Herein, we show that TGM6 binds TßRII through domain 3, but does not bind TßRI, or other type I or type II receptors of the TGF-ß family. In TGF-ß reporter assays in fibroblasts, TGM6, but not truncated TGM6 lacking domains 4 and 5, potently inhibits TGF-ß- and TGM1-induced signaling, consistent with its ability to bind TßRII but not TßRI or other receptors of the TGF-ß family. However, TGM6 does not bind CD44 and is unable to inhibit TGF-ß and TGM1 signaling in T cells. To understand how TGM6 binds TßRII, the X-ray crystal structure of the TGM6 domain 3 bound to TßRII was determined at 1.4 Å. This showed that TGM6 domain 3 binds TßRII through an interface remarkably similar to the TGF-ß:TßRII interface. These results suggest that TGM6 has adapted its domain structure and sequence to mimic TGF-ß binding to TßRII and function as a potent TGF-ß and TGM1 antagonist in fibroblasts. The coexpression of TGM6, along with the immunosuppressive TGMs that activate the TGF-ß pathway, may prevent tissue damage caused by the parasite as it progresses through its life cycle from the intestinal lumen to submucosal tissues and back again.

17.
Immunology ; 167(2): 197-211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758054

RESUMO

Type 2-high asthma is a chronic inflammatory disease of the airways which is increasingly prevalent in countries where helminth parasite infections are rare, and characterized by T helper 2 (Th2)-dependent accumulation of eosinophils in the lungs. Regulatory cytokines such as TGF-ß can restrain inflammatory reactions, dampen allergic Th2 responses, and control eosinophil activation. The murine helminth parasite Heligmosomoides polygyrus releases a TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß despite bearing no structural similarity to the mammalian protein. Here, we investigated if Hp-TGM could alleviate allergic airway inflammation in mice exposed to Alternaria alternata allergen, house dust mite (HDM) extract or alum-adjuvanted ovalbumin protein (OVA). Intranasal administration of Hp-TGM during Alternaria exposure sharply reduced airway and lung tissue eosinophilia along with bronchoalveolar lavage fluid IL-5 and lung IL-33 cytokine levels at 24 h. The protective effect of Hp-TGM on airway eosinophilia was also obtained in the longer T-cell mediated models of HDM or OVA sensitisation with significant inhibition of eotaxin-1, IL-4 and IL-13 responses depending on the model and time-point. Hp-TGM was also protective when administered parenterally either when given at the time of allergic sensitisation or during airway allergen challenge. This project has taken the first steps in identifying the role of Hp-TGM in allergic asthma and highlighted its ability to control lung inflammation and allergic pathology. Future research will investigate the mode of action of Hp-TGM against airway allergic eosinophilia, and further explore its potential to be developed as a biotherapeutic in allergic asthma.


Assuntos
Asma , Eosinofilia , Helmintos , Alérgenos/farmacologia , Animais , Asma/tratamento farmacológico , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Quimiocina CCL11 , Citocinas/metabolismo , Eosinofilia/tratamento farmacológico , Eosinofilia/patologia , Interleucina-13 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Pulmão , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Fator de Crescimento Transformador beta
18.
J Biol Chem ; 298(6): 101994, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500648

RESUMO

The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-ß mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-ß, TGM binds directly to the TGF-ß receptors TßRI and TßRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-ß receptors. We demonstrate that binding is modular, with D1-D2 binding to TßRI and D3 binding to TßRII. D1-D2 and D3 were further shown to compete with TGF-ß(TßRII)2 and TGF-ß for binding to TßRI and TßRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TßRII variants, TGM-D3 was shown to occupy the same site of TßRII as bound by TGF-ß using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.


Assuntos
Proteínas de Helminto , Interações Hospedeiro-Patógeno , Nematospiroides dubius , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta , Animais , Evolução Biológica , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Nematospiroides dubius/classificação , Nematospiroides dubius/genética , Nematospiroides dubius/imunologia , Nematospiroides dubius/metabolismo , Ligação Proteica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Sci Immunol ; 7(71): eabl6543, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559665

RESUMO

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.


Assuntos
Proteínas Morfogenéticas Ósseas , Hiperplasia , Interleucina-13 , Mucosa Intestinal , Proteínas Morfogenéticas Ósseas/metabolismo , Retroalimentação , Humanos , Hiperplasia/imunologia , Interleucina-13/imunologia , Fatores de Transcrição SOXC/metabolismo , Infecções por Strongylida
20.
Mucosal Immunol ; 15(6): 1257-1269, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35428872

RESUMO

Type 2 immunity is activated in response to both allergens and helminth infection. It can be detrimental or beneficial, and there is a pressing need to better understand its regulation. The immunosuppressive cytokine IL-10 is known as a T helper 2 (Th2) effector molecule, but it is currently unclear whether IL-10 dampens or promotes Th2 differentiation during infection. Here we show that helminth infection in mice elicits IL-10 expression in both the intestinal lamina propria and the draining mesenteric lymph node, with higher expression in the infected tissue. In vitro, exogenous IL-10 enhanced Th2 differentiation in isolated CD4+ T cells, increasing expression of GATA3 and production of IL-5 and IL-13. The ability of IL-10 to amplify the Th2 response coincided with its suppression of IFNγ expression and in vivo we found that, in intestinal helminth infection, IL-10 receptor expression was higher on Th1 cells in the small intestine than on Th2 cells in the same tissue, or on any Th cell in the draining lymph node. In vivo blockade of IL-10 signalling during helminth infection resulted in an expansion of IFNγ+ and Tbet+ Th1 cells in the small intestine and a coincident decrease in IL-13, IL-5 and GATA3 expression by intestinal T cells. These changes in Th2 cytokines correlated with reduced expression of type 2 effector molecules, such as RELMα, and increased parasite egg production. Together our data indicate that IL-10 signalling promotes Th2 differentiation during helminth infection at least in part by regulating competing Th1 cells in the infected tissue.


Assuntos
Helmintos , Interleucina-13 , Camundongos , Animais , Interleucina-13/metabolismo , Interleucina-10/metabolismo , Interleucina-5/metabolismo , Células Th2 , Células Th1 , Interferon gama/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...